Samco－Interview

早稲田大学 理工学部 電気•情報生命工学科 教授
宇高 勝之 先生
－プロフィール
1953 （昭和28）年 東京都生まれ
1976 （昭和51）年
1981 早稲田大学理工学部電子通信学科卒業
196 ）年
東京工業大学理工学研科博土讍修了，工学博土
国際電信電話株式会社研究所入所
（1986年まで）
1995 （平成 7）年 早稲田大学理工学部電子•情報通信学科教授

今回のSamco－Interviewは，早稲田大学を訪ね，理工学部電気•情報生命工学科の宇高先生に光ファイバ通信用半導体光デバイスのご研究などについてお話を伺いました。

光エレクトロニクスのご研究を始めら れたきっかけと経緯についてお聞かせ ください。

学部の卒論研究で初めて半導体レーザ を扱いました。1975年当時，半導体レー ザは外国製しか売っていなかったような状況でした。半導体から光が出るという ことに非常に感動し，それでこのテーマ に飛びついたというのがきっかけです。 そのとき，論文を読んでいて東工大の末松教授のところで盛んに研究されている ことを知り，大学院はそちらに進みまし た。東工大に入ったとき，研究室が非常 に活発なので驚いたことを覚えていま す。末松教授に光集積回路を研究したい と話し，具体的に最初は集積二重導波路， そして次に光ファイバ通信用の動的単一 モードレーザの開発に取り組みました。 DBRレーザというものですが，他の方 の協力を得ながら研究を進めまして，何 とか動的単一波長発振などの基本的な特性を実現することができました。その後， 1981年に国際電信電話研究所（KDD研究所）に入りました。まさに単一モード レーザを実用システムに使うということ で各機関でしのぎを削っていた時期でし た。単一モードレーザでは，当初DFBレ ーザというもので実用化を目指していま したが，さらに単一モード性に優れた4分の1波長シフトDFBレーザの開発に携 わり，実用化に陰ながら寄与できたのか なと思っています。その後光スイッチに興味を覚えてきて，KDD 研究所でも研究をしていましたが，1995年に早稲田大学に移ってから本格的にその研究を始め

たというのが経緯です。
現在は，超高精細映像など広帯域情報 の効果的な伝送と処理が行える波長多重 をベースとした超高速光ネットワークシ ステムの構築において，そのキーとなる機能光デバイスや光材料の研究を行って います。今のように来て頂いて対面でお話することは，細かな相手の雾囲気も伝 わり，ある意味で理想的な通信だと言え ます。実際には遠くに離れていても，光 ファイバを使うことにより対面で会話す るような自然な通信が可能になると思っ ています。ですから，このような通信の実現に貢献できる光デバイスを研究して いきたいと思います。特に，高速な半導体光スイッチを中心に，またSi導波路や ポリマーなどの汎用光デバイスと機能素材を研究しています。

サムコの装置はどのようなことにご使用いただいていますか。

サムコさんの装置は，学内に何台かあ ります。当研究室では，絶縁膜やエッチ ングマスクなどの SiO_{2} 膜形成用のCVD装置を最初に使い始めました。結構古い装置ですが，今でも大事に使っています。 RIE装置は，InGaAsP系のデバイス加工 にメタン系ガスを用いたエッチングなど で使っています。また，グレーティング の加工にも使っています。学内の共有設備にはICPエッチング装置があり，その装置も導波路の作成などに使っていま す。その他にもナノテクセンターに何台 か入っていまして，そこのエッチング装置もSiのエッチングなどに利用させて頂

いています。色々なところに装置があり ますので，それらを多面的に利用させて頂いています。

これまでのご研究で，失敗談とか面白
いエピソードはありますか。
思い返してみると，面白いエピソード という意味では，学部4年生の卒論のと き，先ほど申しました半導体レーザを買 ってきて基礎特性の評侕をしていたとき のことがあります。実験にファイバも必要となり，自分でプラスチックを溶かし て見よう見まねで作ろうとしたことがあ ります。結果としていいものはできませ んでしたが，今から思えば作り方も知ら ない時期に自分なりにいろいろな創意工夫をして作ったんだなという思い出はあ りますね。非常に感動したという経験は大学院に入ってから，これも先ほど言い ましたDBRレーザを発振させるべく試行錯誤していたときのことです。レーザ発振というのは，電流光出力特性に折れ曲がりが出るか出ないかで如実に結果が分かるものです。デバイス化してチェッ クしてもなかなか発振せず，何回もやり直し，ようやくあるチップがパッと立ち上がって発振したときは非常に感動した記憶があります。その経験は，私の研究生活の原点になっています。失敗につい てはあまり覚えていませんが，残念だっ たという思い出は沢山あります。KDD研究所にいるときに埋め込みレーザを研究していましたが，事情があってある構造の検討を変更しました。それを他社が高性能な埋め达みレーザとして開発した

ことを後で知って，地団駅踏んだ思い出 などがあります。

日本の科学技術と将来についてはどの ようにお考えでしょうか。

文部科学省などの研究費補助金につい てですが，明日の日本を引っ張っていく シーズを効率的に出すということで，選択と集中による配分という方針から研究費が集中する傾向があります。このよう な競争的資金は大事なことだとは思いま すが，広く人材を育てるという観点から研究費をもう少し広く行き渡るようにし ても良いかなと感じています。後は，昨今，日本には多くの素晴らしい会社があ り，頑張っているのですが，外国の会社 にかなり押されて結果につながっていな いということがあると思います。自分は大学におりますので詳しく分かるわけで はありませんが，シーズがあったとして も，うまく産業に結びつける戦略性と呼 ぶのでしょうか，制度も絡むと思います が，そういったところに積極的に取り組 んで行く必要があると思います。

2007年4月に早稲田大学理工学部が再編されるそうですが，ご紹介いただ けますか。

2007年に早稲田大学は建学125周年を迎えます。それにあたり学内では組織改革や様々なリニューアルが行われていま す。また，理工学部は2008年が設立 100周年でもあり，それをきっかけに来年 4月に基幹理工学部，創造理工学部，先進理工学部の3学部に再編されます。理工学部は，私学で最大の理工系学部であり， 10,000 人くらいの学生がしのぎを削って います。しかし，組織が大きすぎて機動性に欠けるため，これを改善し，同時に 3つの学部で独自性を発揮し，切䕢琢磨 しょうという主旨です。現在，私は電気•情報生命工学科におりますが，この学科は『生命』という名前がついており，電気と生命を融合した新しい分野と人材 を育成しょうという非常に新しいコンセ プトでスタートしました。しかし，分野 の範囲が広いため，少し先鋭化してナノ テクノロジーからLSI設計などのシステ ム応用まで含めた電子分野と光分野に関 する学科を新設することになり，基幹理工学部に電子光システム学科ができま す。早稲田大学に『光』という名がつい

た学科が初めてできることになり，私も それに関わっていますので，頑張って取 り組んでいこうと思っています。

先生のご趣味についてお聞かせくだ さい。

サッカーが好きです。見るのも好きで すが，する方がもっと好きです。学生と プレーするといたわってくれるので，結構楽しんでやっています。平素は，水泳 で体を鍛えています。家では玄米をよく食べていますので，そのお蔭かほとんど風邪をひきませんね。学生はよくひきま すけれども。

最後にサムコに対して一言お願いし ます。

先ほど言い忘れましたが，末松研究室 にいたときにサムコさんからSiN用CVD装置を購入しました。先生のポリシーだ と思いますが，大きい方が均一性が良く なるということで直径 30 cm くらいの試料台の装置でした。一学生でしたので辻社長は覚えていらっしゃらないと思いま すが，このときにお目にかかっています。 サムコさんのベンチャースピリットは，当時から感じていました。非常にコンパ クトで機能性のある装置を作られ， KDD研究所のときにも，サムコさんの装置が3，4台並んでいるサムココーナー がありました。研究に向いたコンパクト で機能性のある使い勝手のよい装置をぜ ひ今後も供給し続けて頂ければと思いま す。また，サービスもまめに来てくださ るので，そういう点でも非常にありがた いと思っています。

お忙しいところ貴重なお時間をいただ き，誠にありがとうございました。

